
Quantum Physics II (8.05) Fall 2004 
Assignment 11 

Massachusetts Institute of Technology 
Physics Department Due WEDNESDAY, November 24 
November 17, 2004 7pm 

This week we finish the radial equation. We will then begin our discussion of the addition 
of angular momenta. 

Reading Assignment for week 11 of the course 

• (continued from last week) The “factorization method” is discussed in Ch.6 and 
Ch.8 of Ohanian. Ohanian sets up his notation and proves a general theorem 
in 6.2. (We will not cover the details of this particular theorem in lecture.) §
Ch.8 contains three important examples of the factorization method,

i) the isotropic harmonic oscillator, ii) hydrogen, and

iii) the free particle in spherical coordinates.


Griffiths 4.4, in particular 4.4.3 on the addition of angular momenta. • § §

Continued on the next page................
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Problem Set 11 

1. Coupled One-dimensional Harmonic Oscillators [5 points] 

Consider two coupled one-dimensional harmonic oscillators with the Hamiltonian 
2 2 � � p 2 2 2H = 1 + 

p
+ 
mω2 

x1 + x + 2λ(x1 − x2)
2 (1)

2m 2m 2 2 

(a) Using a similar procedure to what we did for hydrogen in lecture, define center 
of mass coordinates P , R and relative coordinates p, r for the two particles. 
Work out expressions for all the commutation relations for these operators. 

(b) Define a total mass M and reduced mass µ. Write H in term of these mass 
parameters and the coordinates from part (a). Show that H separates into two 
parts, where each part is built of operators that commute with all the 
operators in the other part. 

(c) Determine all the energy eigenvalues for H, and explain what quantum 
numbers you would use to label the energy eigenstates. 

2. A pair of power law potentials [15 points] 

Here is an application of the supersymmetric method to a problem in one 
dimension. Consider the two Hamiltonians generated by the superpotential 
W(x) = gx3 . [Choose units so that � = 2m = 1]. 

(a) What two Hamiltonians are related by this choice of W(x)? 

(b) Graph them for various values of g and note how different these potentials look! 

(c) Which of these Hamiltonians has a zero energy ground state? What is its 
wavefunction? 

(d) Prove that the wavefunction of the zero energy state of the previous part obeys 
the Schrödinger equation by direct substitution (and differentiation). 

(e) Prove that similar results would be obtained for any power law superpotential 
with an odd power of x. 

3. Isotropic Harmonic Oscillator in Two-Dimensions [20 points] 

The isotropic harmonic oscillator in two-dimensions for a particle of mass M has 
the Hamiltonian 

1 � 
2
�

2 
� 

H = p 2 + py + 
Mω2 

� 
x 2 + y . (2)

2M x 2 
If we switch to polar coordinates (ρ, φ) and work in the position representation then 
this Hamiltonian can be written as 

� ∂2 � L2
�

2 1 ∂ Mω2ρ2 

H = − 
2M ∂ρ2 

+ + z + , (3)
ρ ∂ρ 2Mρ2 2 

where ρ = x2 + y2 and Lz = xpy − ypx = −i� ∂/∂φ. 
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(a) We readily observe that [Lz , H] = 0. Let E, m� be the simultaneous |
eigenstates of these operators, so that H E, m� = E E, m� and| |
Lz E, m� = m� E, m�. What form do you expect for ρ and φ dependence of | |
the wavefunction ψE,m(ρ, φ) = �ρ, φ E, m�? Solve explicitly for the |
φ-coordinate dependence. What are the possible values for m? 

ε

(b) Let the radial wavefunction f(ρ) = u(ρ)/
√
ρ and derive the radial equation for 

u(ρ). Define a dimensionless coordinate r = ρ/b and a dimensionless energy 
ν,m = aEν,m, so that the radial equation becomes 

d2 (m2 − 1/4)
Hmuν,m(r) = εν,muν,m(r) , Hm = − 

dr2 
+ 

2 
+ r 2 . (4) 

r

What are a and b? 

(c) Consider the superpotential 

( m + 1/2) Wm(r) = − | | 
+ r. 

r 

and H (2)
Determine the Hamiltonians H (1) 

m . Relate these Hamiltonians to each 
other and to Hm. 

m 

(d) Let’s assume that H (1) 
has an eigenstate with zero energy without constructing m 

it explicitly. [You may construct it if you wish. You should find 
−r2/2u0,m(r) = r|m|+1/2 e . Thus the absolute value of m that appears in Wm(r) 

ensures that u0,m(0) = 0 as desired.] By following the steps of the 
supersymmetric method as outlined in the handout, show that the energy 
levels for Hm are 

εν,m = 2 m + 4ν + 2 | | 
for integers ν ≥ 0. What are the corresponding energy levels Eν,m for our 
original Hamiltonian? For the eigenstate with the smallest energy is the 
answer what you expect? Is the energy and degeneracy of the first excited 
state also what you expect? [Recall that you already know the answer for the 
energy levels of the Hamiltonian in (2), see for example problem set 4.] 

4. Analyzing a Set of Potentials Related by Supersymmetry [20 points] 

In this problem we will study another family of Hamiltonians related by operators 
A and A† defined with the aid of a superpotential, W(x). Like the hydrogen atom, 
there is an entire family of Hamiltonians labeled by an index n (it was the orbital 
angular momentum, �, for hydrogen). Also like the hydrogen case, you have to solve 
this problem by using the fact that both Hamiltonians, H (1) 

and H (2) 
are related to n n 

the Hamiltonian of interest, HPT .n 

If you are not familiar with the hyperbolic functions, eg with relations like 
cosh2 x − sinh2 x = 1 and tanh2 x = 1 − sech2 x, I would suggest that you work on 
this problem collaboratively with one of your fellow students who is. 
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Consider the Schrödinger equation in one dimension, in which we have scaled x and 
the energy to make everything in the Schrödinger equation dimensionless, and to set 
� = 2m = 1. 

The Pöschl-Teller Hamiltonians are defined to be 

d2 

HPT 
n − n(n + 1)sech2 (5)
= − x 

dx2 

where n = 0, 1, 2, 3, . . . can be any nonnegative integer. 

Your task in this problem is to find energies and eigenstates for all of the bound 
states for all of these infinitely many Hamiltonians. 

(a) Consider the infinite set of superpotentials 

Wn = n tanh x (6) 

where n = 0, 1, 2, 3, . . .. Using the methods from the supplementary notes, 
(2)

and Hn 
(1)

H, n 
† 
n from the superpotentials (6). Show that construct An, A

(2)
H= n

(1)Hn +1 − (2n+ 1) (7)


(2)
and Hn 

(1)
Relate Hn to the Pöschl-Teller Hamiltonians. 

(1)
(b) Show that Hn has a ground state with energy eigenvalue E = 0. Find the


ground state wave function for each n. [You need not normalize the wave 
functions. That is, you only need to find the wave functions up to an overall 
normalization constant.] 

(c) You have shown that H (1) 
has a bound state with energy E = 0. Use this fact, 1 

the relation (7), and results proved in general in the supplementary notes to 
conclude that H (1) 

must have a bound state with a particular positive energy. 2 

Find this energy eigenvalue. (You have now found two bound states of H (1)
: 

the ground state that you found in part (b) and the excited state that you 
have found here.) 

(d) Suppose that I tell you that H (1) 
has only one bound state, namely the ground 1 

(1)
state that you found in part (b). Assuming this to be the case, show that Hn 

has precisely n bound states. Find the energy eigenvalues for all n bound

(1)

states of Hn . Write an expression for the wave function associated with each

eigenstate in the form of differential operator(s) acting on wave functions you 
have found explicitly in part (b). 

(e) Consider the Hamiltonian H (1) 
. What is the lowest energy eigenvalue of this 0 

Hamiltonian? Use this fact to demonstrate that H1
(1) 

cannot have a second 
bound state with energy eigenvalue between 0 and 1. [This proves that H (1) 

has1 

only one bound state, its ground state with E = 0, as I had you assume above.] 

2 
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(f) What are all the bound state energies of the Pöschl-Teller Hamiltonians H PT?n 

(g)	 This last part is optional and will not be graded, although a solution 
will be provided. The Pöschl-Teller potentials also have unbound 
“scattering” states with positive energy. [Unlike the harmonic oscillator the 
potential −n(n + 1)sech2 x goes to zero as x → ±∞ and therefore allows for 
scattering.] You know what the scattering states are for H PT: the wave 0 

functions are exp(ikx) with energy k2 . Use the methods developed earlier in 
this problem to find the wave function for the scattering state with energy k2 in 
the potentials −n(n + 1)sech2 x with n = 1 and n = 2. Calculate the reflection 
and transmission coefficients Rn(k) and Tn(k), and show that Rn = 0 and 
Tn	 = 1, meaning that these potentials are “reflectionless”. [Do the calculation | |
only for n = 1, 2. But, the potentials are in fact reflectionless for all n.] 


